Nuprl Lemma : qsum-reciprocal-squares 11,40

J: n < J+1. (1/n * n 2 - (1/J
latex


Definitionsi  j < k, {i..j}, False, A  B, P  Q, p  q, <+*>, 0, r+gp, e, i <z j, Y, (op,idlb  i < ubE(i),  lb  i < ubE(i), (ri  k < jE(k), 1/r, r * s, qpositive(r), p q, q_le(r;s), <+>, t.2, t.1, , x f y, a  b, ff, (i = j), tt, if b then t else f fi , qeq(r;s), b, P & Q, A, xt(x), True, T, P  Q, r + s, P  Q, r - s, (r/s), a  j < bE(j), r  s, {T}, SQType(T), , P  Q, t  T, x:AB(x), x(s), Dec(P), , S  T
Lemmasle wf, int-rational, qle transitivity qorder, qle-int, qadd-add, qmul-qdiv-cancel4, qmul assoc, qmul com, qmul ac 1 qrng, qmul one qrng, qmul-positive, qmul-mul, qless-int, qless wf, qmul-qdiv-cancel, qmul over minus qrng, qmul over plus qrng, qmul preserves qle, mon ident q, qadd inv assoc q, qinverse q, mon assoc q, qadd com, qmul wf, qadd ac 1 q, qadd wf, qsum wf, qadd preserves qle, int entire, false wf, assert-qeq, qeq wf2, assert wf, qsub wf, int seg wf, int-eq-in-rationals, not functionality wrt iff, int inc rationals, qdiv wf, sum unroll hi q, rationals wf, true wf, squash wf, qle wf, nat plus wf, decidable int equal, nat plus properties

origin